2 3 Ju n 20 09 Subproduct systems of Hilbert spaces : dimension two

نویسنده

  • Boris Tsirelson
چکیده

A subproduct system of two-dimensional Hilbert spaces can generate an Arveson system of type I1 only. All possible cases are classified up to isomorphism. This work is triggered by a question of Bhat: can a subproduct system of n-dimensional Hilbert spaces generate an Arveson system of type II or III? The question is still open for n > 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

m at h . O A ] 1 9 Ju n 20 09 THE CUNTZ SEMIGROUP OF SOME SPACES OF DIMENSION AT MOST 2

The Cuntz semigroup is computed for spaces X of dimension at most 2 such thatˇH 2 (X, Z) = 0. This computation is then extended to spaces of dimension at most 2 such thatˇH 2 (X\{x}, Z) = 0 for all x ∈ X (e.g., any compact surface). It is also shown that for these two classes of spaces the Cuntz equivalence of countably generated Hilbert C*-modules (over C 0 (X)) amounts to their isomorphism.

متن کامل

Graded algebras and subproduct systems: dimension two

Objects dual to graded algebras are subproduct systems of linear spaces, a purely algebraic counterpart of a notion introduced recently in the context of noncommutative dynamics (Shalit and Solel [5], Bhat and Mukherjee [2]). A complete classification of these objects in the lowest nontrivial dimension is given in this work, triggered by a question of Bhat [1].

متن کامل

ar X iv : 0 90 5 . 31 68 v 3 [ gr - q c ] 3 0 Ju n 20 10 Black hole entropy and SU ( 2 ) Chern - Simons theory

Black holes in equilibrium can be defined locally in terms of the so-called isolated horizon boundary condition given on a null surface representing the event horizon. We show that this boundary condition can be treated in a manifestly SU(2) invariant manner. Upon quantization, state counting is expressed in terms of the dimension of Chern-Simons Hilbert spaces on a sphere with punctures. Remar...

متن کامل

Error bounds in approximating n-time differentiable functions of self-adjoint operators in Hilbert spaces via a Taylor's type expansion

On utilizing the spectral representation of selfadjoint operators in Hilbert spaces, some error bounds in approximating $n$-time differentiable functions of selfadjoint operators in Hilbert Spaces via a Taylor's type expansion are given.

متن کامل

ar X iv : h ep - t h / 05 12 11 4 v 2 1 3 Ju n 20 07 κ - Minkowski representations on Hilbert spaces April 12 , 2008

The algebra of functions on κ-Minkowski noncommutative spacetime is studied as algebra of operators on Hilbert spaces. The representations of this algebra are constructed and classified. This new approach leads to a natural construction of integration in κ-Minkowski spacetime in terms of the usual trace of operators.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009